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Abstract--Structures observed in ductile shear zones show that deformation is continuous and strain is 
heterogeneous. This leads us to define a simple model for shear strain rate 5'. When a shear zone simultaneously 
undergoes simple shearing and pure shearing (contraction or extension), the condition of continuity of 
deformation shows that -~ must be a function of time. 

Integration of the deformation-rate equations yields the particle paths in the deforming body. From these we 
can determine, at any time and at any point in the body, the finite strain tensor (lengths and orientations of the 
axes of the finite strain ellipsoid); we can therefore define the finite strain trajectories and compare them with 
orientations of internal structures (schistosity, tension gashes). 

The particle paths also allow us to study the progressive deformation of passive strain markers. 

INTRODUCTION MODEL 

STUDIES of finite strain in ductile zones that have under- 
gone simple shear show that deformation is continuous 
in space and strain is heterogeneous (Ramsay 1967, 
Ramsay & Graham 1970, Hara et al. 1973); for example 
Fig. 1 shows a shear zone where the finite amount of 
simple shear 3' changes continuously, and the induced 
schistosity takes a sigmoidal form. 

However, simple shear alone cannot be responsible 
for the development of structures where the schistosity is 
continuous in and out of the shear zone (Fig. 2) (Ramsay 
& Graham 1970, Coward 1976, Cobbold 1977). Such 
structures can result from superposition of pure shear 
and heterogeneous simple shear during the same event 
of deformation. This combination is generally enough to 
describe most kinds of strain that rocks may undergo 
(Ramsay 1979). 

Integration of the rate-of-deformation equations 
yields an equation which describes the path of any 
particle in the deforming body (Ramberg 1975). This 
equation can be used to determine the finite strain tensor 
(lengths and orientations of the axes of the finite strain 
ellipsoid) at any time and at any point of the body. We 
can therefore define finite-strain trajectories and com- 
pare them with oriented internal structures related to 
the direction and intensity of principal strains. In ductile 
zones, schistosity develops approximately normal to the 
short axis of the finite strain ellipsoid (Ramsay 1967, 
Elliott 1972, Gray & Durney 1979). In brittle-ductile 
zones, tension gashes form perpendicular to the large 
axis of the finite strain ellipsoid (Ramsay 1967, Jaeger 
1969). 

The particle-path equation also allows us to study the 
progressive deformation of passive strain markers with 
the same rheological properties as the surrounding 
material. 

We study plane strain of a continuous, homogeneous, 
incompressible and initially isotropic material subject to 
a steady uniform pure shear with axes x y (the principal 
strain rates ~ and ey being constant both in the plane and 
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Fig. 1. Ductile shear zone in Lewisian metagabbro, Castell Odair, N. 
Uist, Scotland (after Ramsay & Graham 1970). (a) Sigmoidal shape of 
schistosity. (b) Variation of 3' as deduced from orientation of 

schistosity, assuming simple shear. 
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Fig. 2. Pattern of schistosity passing continuously across a ductile shear zone; granite from Cristallina, Ticino, Central 
Switzerland (after Ramsay & Graham 1970); (B.B'. = boundary of shear zone). 
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Fig. 3. Model of variation of T throughout a ductile shear zone. 

in time), in which a heterogeneous simple shear zone 
functions simultaneously. The direction of simple shear 
is parallel to the x axis; the shear zone is symmetrical 
relative to the x axis. 

In order  to represent,  at time t, the variation of the 
rate of shear strain ~/throughout the shear zone, we use 
a simple model of trapezoidal form (Fig. 3). In a central 
zone the deformation is homogeneous.  Outside this, ~/ 
decreases in a linear fashion and vanishes at the limit of 
the shear zone. Thus 

T =  4/m for 0 ~< y ~< hi,  
homogeneous shear zone 

~/m (h - y) for h I ~ y <~ h, (1) T-h-h1 
heterogeneous shear zone 

~/= 0 for y ~> h, 
non-sheared zone. 

Therefore  the shearing is heterogeneous in space, but 
steady in time. 

Half  the initial thickness h0 of the shear zone is taken 
as the unit of length (h0 = 1); its value is h at time t. The 
initial half-thickness, hm, of the central part of the shear 
zone, where the deformation is homogeneous,  becomes 
'hi at time t. The  rates of displacement are expressed as 

units of length per unit of time and the rate of deforma- 
tion in unit -~ of time. ~x is constant in the three zones: if 
~x < 0, the zones are extended,  and if~x > 0, the zones 
are contracted. ~x = 0 corresponds to a simple shear 
zone without bulk shortening/extension. 

This model agrees well with observations made in 
natural ductile shear zones (Fig. 1). A linear variation of 
~/exists also, for example, in the heterogeneous shear 
zone appearing at the contact with the walls during the 
flow of a visco-plastic fluid in a pipe (Reiner 1960). 

P A R T I C L E P A T H S  

The particle paths and streamlines are obtained by 
integrating the velocity at any point in the deforming 
body. For pure shear of an incompressible material 
undergoing plane strain, ey ----- --ex so the velocity is 

e°xt(  t 
(The subscript e indicates that this displacement is due 

to pure shear alone). 
For simple shear, the rate of shear strain ~/ is the 

gradient of the velocity parallel to the shear direction. 

~ = ~_~_r, 
dy 

from which clScv = ~/dy, so that the velocity at a distance 
y from the x axis is 

±v = Tdy,  (3) 

p~ = O. 

(The subscript 3' indicates that the displacement is due 
to simple shear alone.) 

When the two kinds of motion occur simultaneously, 
the velocity at any point (x, y) is obtained by addition of 
(2) and (3) 
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± = exX + I i  ydY' (4) 

Y = -exy.  

The velocity component parallel to the y axis is that of 
pure shear alone: 

j~_  d y _  fxY, 
dt 

from which 

dy _ ex dt. 
Y 

By integration we obtain 

Y = Y0 exp (-~xt), 

where Y0 is the initial ordinate of the point considered. 
From this equation, we find the value at time t of h0, 

h = h0 exp ( - e d )  = exp (-~xt), 

and that of hm, 

hi = hm exp (-~xt). 

When pure shear and simple shear occur simultane- 
ously, the value of Joy is obtained by integration of (3), 
where ~/is a function of y, h and hi, given by (1): 

± y =  J'mY= J 'mY0exp(-fxt)  f o r 0 < ~ y ~ < h l ,  

_y2 + 2hy - h 2 
Jc~ = % 

2(h - hi) 
_y2 + 2y ° _ h2i 

= ~m 2(1 -- h01) exp (-~xt) for hx ~< y ~< h, 

±v --- Ym h ~ +  hi _ ~/m -----~1 + hm exp (-~xt) for y t> h. 

The equation for L/ can therefore be written in the 
general form 

Joy = 4/mr(Y0) exp (--~xt), (5) 

wheref(y0)  =Y0 f o r 0 ~ < y ~ < h l ,  
f (Yo)  = ay~ + byo +c  forhx ~<y~<h, 
f (Yo)  = k f o r y  ~>h. 

Continuity of deformation at the boundary of the 
shear zone leads to an identity between ±v and the rate of 
translation ±v of the non-sheared zone: 

"~T = k4/m exp (-~xt). 

In general, the translation of the non-sheared material 
is subordinate to kinematic conditions outside the shear 
zone and ±T is a function of time. The rate of shear strain, 

4/m = [J7 T exp (Oxt)]/k ( 6 )  

is thus a function of time. 
The hypothesis that y and Ym remain constant during 

deformation (Ramberg 1975) is probably not realistic 
because it implies that ±f is a perfectly well-defined 
function of time and of Ox, 

J f V  = A exp (-dxt). 

Knowledge of ±f allows us to determine, by integrat- 
ing (4), the equation of the particle path; if ±T is constant, 

~/is a function of time t and of the ordinate y of the point 
defined by (1) and (6). 

Equation (4) gives 

dx 
± - - ~xX + ~/mf(Yo) exp (-0xt). 

dt 

Introducing 4/m f r o m  ( 6 ) ,  

dx _ ~xX + joy 
dt T f(Yo).  

Integration yields the equation of the particle path: 

x = x 0 exp (ex/) + ~ f(y0)[exp (~xt) - 11, 

Y = Y0 exp ( - e d )  ~x  (7) 

where (x0, Y0) are the initial coordinates of the point 
considered. 

FINITE STRAIN 

From the equation of the particle path, (7), we can 
determine the tensor of deformation gradients, 

OXo OYol~ [ 
Vyo o_yl   Oyo/  \ 

In the case studied here, C = 0 so the principal finite 
strains (lengths of the semi-axes of the strain ellipse 
(A1) v2 and (A2) u2, Fig. 4), are given by (Nadai 1950) 

1 B2 E2 B2 E2)2 A1.2 - 2(AE)2 [A 2 + + + [(A 2 + - 

+ 4(BE)2]I/2]. (8) 

The principal directions of strain (Fig. 4) are given by 

E 2 _ A2(AE) 2 
tan ~M = (9a) 

B E  

E 2 - ) t I ( A E )  2 
t a n  (I) m ~--- • (9b) 

B E  

T-rn 

Fig. 4. Finite strain ellipse and finite strain trajectories, Ira, IM, in a 
shear zone. 
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Fig. 5. Variation of (a) qb M and (b) A}/2 throughout the shear zone, for several values of kv numbered. 

We can thus determine the finite strain trajectories, IM 
and Im. IM, which is the integral curve of 

dy _ tan ~M, (10a) 
dx 

is perpendicular at every point to the minor principal 
strain, A2 (Fig. 4); Ira, which is the integral curve of 

dy _ tan dOm, (10b) 
dx 

is perpendicular at every point to the major  principal 
strain, A1 (Fig. 4). 

C O N T R A C T I O N  ACROSS SHEAR ZONE 

Influence of  the rate of  translation XT 

Assume the values of ~x and t are constant so that the 
intensity of pure shear outside the shear zone, given by 
the product,  p = Ox t, is constant. 

For  given values of Ox, t and hT, Fig. 5 shows the 
variation across the shear zone of the major  principal 
finite strain Al and of the angle ~M- The value of A1 
increases with hT from the edges of the zone to the 
central part where the strain is homogeneous.  The angle 
~M reaches a maximum value (~M) max; the ordinate YM 
of this maximum increases with the value of XT and is 
situated at a point where the intensity of )h reaches a 
given value (Ax) max. 

Depending on the direction of variation of ~M, tWO 
zones can be distinguished: (i) a central zone 
(0 <~ y ~< YM) witb prominent  influence of simple shear 
is characterized by the increase of ~M to its maximum 
value (~M) max, and is surrounded by (ii) two zones with 
prominent  influence of pure shear (YM ~ Y ~< h) where 
~M decreases from its maximum value to zero at the 
boundary (y = h) of the shear zone. The central zone 
exists only when ±T is strong enough (Fig. 5a) and its 

thickness increases with increasing ±T. The existence of a 
maximum for ~M results in a point of inflexion on the 
strain trajectories (Fig. 6). 

In the zone of homogeneous strain (0 ~< y <~ hi), ~M 
is constant; the curves showing its variation as a function 
of h x are drawn for several values of p,  t being constant 
(Fig. 7) and for several values of ex and t, so that p is 
constant (Fig. 8). ~M increases from zero for ±X = 0 in 
the case of pure shear, reaches a maximum value ( ~ a )  
max for (hx) max and then decreases to very low values 
as ±T continues to increase. The value of (~M) max 
depends only on the intensity of pure shear (Fig. 8) and 
decreases when p increases (Fig. 7) (p = 0 corresponds 
to simple shear), whereas (±w) max depends on the 
values of ex and t (Fig. 8). For a given value of ex and t, 
the same angle ~M can be obtained from two different 
values (±T)1 and (±T)2 of the rate of translation (Fig. 7), 
these values being linked by the relation: 

(hT)  1 (hT)  2 ~- (XT) 2 max. (11) 

The shapes of the curves ~M = f(AX) (Fig. 9) are 
obviously similar to those of the curves ~M = f(hT). 
However ,  to a given value of p there corresponds only 
one curve ~ a  = f(A1), whatever the value of ex and t. 
Therefore ,  for a given angle ~M, tWO Xl values (in 
general different) occur, (A1)1 and (A1)2, (Fig. 9) such 
that: 

( h l ) l  (A1)2 = COt2 ~PM. (12) 

If (hl)cs is the value linked to the simple shear (p = 0) 
for which the same angle d~ M is obtained (Fig. 9), we 
have (hl)cs = cot2qbM, and therefore 

(A1)l (Al)2 = (A1)cs. (13) 

Therefore ,  for a given orientation of the principal 
strains, the intensity of the finite strain is always higher 
in the case of simple shear than in the case of simul- 
taneous pure shear and simple shear; in the latter case, and 
for a given value of p, two different intensities of finite 
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Fig. 6. Finite strain trajectories corresponding to Fig. 5 (±T numbered). 
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Fig. 7. Central zone with homogeneous strain: variation of qb M with increasing ±T for several values (numbered) ofp =. ~xt. 

strain correspond to the same orientation of the axes of 
the finite strain ellipse: the greater  the difference 
between (At)I and (;h)2, the smaller the angle qb M and the 
weaker  the intensity of pure s h e a r p  (Fig. 9). 

When the intensity of  pure shear p outside the shear 
zone is unknown,  a double infinity of values of finite 
strain corresponds to each value of ~M. 

Therefore ,  for a given value of p, the strain trajec- 
tories can be indeterminate  in the homogeneous  strain 
zone, although the values of ±T, and thus those of the 
principal strains, are different; such curves, as well as 
those for simple shear resulting in the same angle ~M, 
are drawn in Figs. 10 and 11. In order  to distinguish the 

two possible values of finite strain it is necessary to 
consider the heterogeneous strain zone: for (JET) 1 < (±V) 
max and thus for the value (A1)l no zone of prominent  
influence of simple shear appears  and ~M decreases; for 
(JET)2 > (±T) max and thus for the value (;h)2, the zone of 
prominent  influence of pure shear must appear;  ~M 
increases, reaches its maximum value (~M) max in YM 
and then decreases to zero at the boundary of shear zone. 

Influence of  time t 

Assume the value of ~x and JeT are constant and thus 
the intensity of pure shear (characterized by the product 
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Fig. 8. Central  zone with homogeneous  strain: variation of qb M with increasing ±T for several values of d~ (numbered)  and t 
such that  p = ~x t = constant.  
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Fig. 9. Central  zone of homogeneous  strain: variation of qb M with increasing AI/2 for several values of p (numbered) .  
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Fig. 10. Variat ion of (a) qb M and of (b))tll/2 th roughout  the shear  zone: the values (.tT)l = 2 and (±T)2 = 10 correspond 
to superposi t ion of simple shear  and pure shear;  the value (kT)cs = 14 corresponds to simple shear  alone. 
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Fig. 11. Finite strain trajectories corresponding to Fig. 10. 
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Fig. 12. Variation of (a) (I' M and (b))tl/2 th roughout  the shear  zone,  for several values of  t numbered .  
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Fig. 13. Finite strain trajectories corresponding to Fig. 12. 
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Fig. 14. Variation of (a) ~M and (b) AI/2 throughout the shear zone, for several values of ex numbered. 
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Fig. 15. Finite strain trajectories corresponding to Fig. 14. 
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Fig. 16, Simple shear combined with extension perpendicular to the shear zone: strain trajectories for several values of t 
(numbered). Compare the shape of the curves IM with that of the schistosity in Fig. 2. 
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Fig. 17. Warping of initially rectilinear passive markers with increasing t (numbered) during contraction (a) perpendicular 
to the shear zone or (b) extension perpendicular to the shear zone. 
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Fig. 18. Warping of initially rectilinear passive markers with increasing±x (numbered) during contraction (a) perpendicular 
to the shear zone or (b) extension perpendicular to the shear zone. 
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Fig. 19. Simple shear  zone: evolution of initially elliptical passive markers  with increasing t. 

r.0 

y 

1 
% 

I 

t.O.2 

0 
t .0.4 t .0 .6  t =0.8 

~"-x 

b 

,y 

5 

o 

~y 

x 1- 

t.O 

% 1.0.2 

t.0.6 

x 

Fig. 20. Contract ion perpendicular  to the shear  zone: evolution of initially elliptical passive markers  with increasing t for (a) 
/~x = 0.2 and (b) ex = 1. 
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p = e×t) and that of displacement by translation of the 
non-sheared zone (XT = ±Tt) increases with time t. 

With increasing t, the values of (~M) max decrease 
and those of (hi) max and of the relative thickness of the 
zone of dominant  simple shear increase (Fig. 12); the 
corresponding strain trajectories are shown in Fig. 13. 

Influence o f  the principal strain rate ex 

Assume the values of t and ±T are constant and thus the 
intensity of  pure shear increases with ~ whereas that of  
the displacement by translation, (XT ---- JET), is constant; 
the value of ~ defined by (1 and 6) increases with ~ .  

Figure 14 shows that (;h) max increases with ex 
whereas (qbM) max and the thickness of the zone of 
dominant  simple shear decreases; the corresponding 
curves IM and Im are shown in Fig. 15. 

The strain trajectories drawn in Fig. 16 for several 
values of t correspond to the case when the shear zone is 
simultaneously extended perpendicular  to the walls; we 
note that  the shape of the curves IM (perpendicular at 
every point to the minor  principal strain) agrees well 
with that of the natural schistosity of Fig. 2. 

a well-defined function of t ime and of the rate of transla- 
tion JeT of the non-sheared material.  

When ±T is kept constant,  we can determine the finite 
strain from the particle path and its evolution with time. 
In doing so, we can define the finite-strain trajectories 
which allow us to study the influence of several paramet-  
ers on the formation and evolution of oriented internal 
structures such as the schistosity developed in ductile 
zones, or tension gashes in brittle-ductile zones. 

This work shows the complex variation of finite strain 
in zones of ductile deformation where pure shear and 
heterogeneous simple shear act simultaneously; in gen- 
eral, it is very difficult to measure  finite strain f rom the 
orientation of natural structures, even those sub parallel 
to principal strains (schistosity for example)  as an infinity 
of strain values corresponds to each value of ~M- 

The particle path also allows us to study the progres- 
sive shape changes of markers  with the same rheological 
propert ies as the surrounding material .  

Acknowledgements--The author is very grateful to Dr. P. R. Cobbold 
for help in improving the final version of the paper. 

PASSIVE STRAIN MARKERS 

Our  knowledge of the particle path allows us to study 
the shape changes of passive strain markers  with the 
same rheological propert ies  as the surrounding material .  

We show the change in shape of initially rectilinear 
passive markers  with increase in t and ±X (Figs. 17 and 
18) and of initially elliptical passive markers  (Figs. 19, 20 
and 21) in shear zones simultaneously undergoing either 
contraction or extension perpendicular  to the walls. 

CONCLUSIONS 

My simple model  represents the variation of the rate 
of shear strain y throughout  the shear zone. 

When the shear zone simultaneously undergoes sim- 
ple shear and pure shear, continuity of deformation at 
the boundary  of the sheared material  requires that 5' be 
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